300 research outputs found

    Dynamics of the peel front and the nature of acoustic emission during peeling of an adhesive tape

    Full text link
    We investigate the peel front dynamics and acoustic emission of an adhesive tape within the context of a recent model by including an additional dissipative energy that mimics bursts of acoustic signals. We find that the nature of the peeling front can vary from smooth to stuck-peeled configuration depending on the values of dissipation coefficient, inertia of the roller, mass of the tape. Interestingly, we find that the distribution of AE bursts shows a power law statistics with two scaling regimes with increasing pull velocity as observed in experiments. In this regimes, the stuck-peeled configuration is similar to the `edge of peeling' reminiscent of a system driven to a critical state.Comment: Accepted for publication in Phys. Rev. Let

    Adhesive Contact to a Coated Elastic Substrate

    Get PDF
    We show how the quasi-analytic method developed to solve linear elastic contacts to coated substrates (Perriot A. and Barthel E. {\em J. Mat. Res.}, {\bf 2004}, {\em 19}, 600) may be extended to adhesive contacts. Substrate inhomogeneity lifts accidental degeneracies and highlights the general structure of the adhesive contact theory. We explicit the variation of the contact variables due to substrate inhomogeneity. The relation to other approaches based on Finite Element analysis is discussed

    Interplay of internal stresses, electric stresses and surface diffusion in polymer films

    Full text link
    We investigate two destabilization mechanisms for elastic polymer films and put them into a general framework: first, instabilities due to in-plane stress and second due to an externally applied electric field normal to the film's free surface. As shown recently, polymer films are often stressed due to out-of-equilibrium fabrication processes as e.g. spin coating. Via an Asaro-Tiller-Grinfeld mechanism as known from solids, the system can decrease its energy by undulating its surface by surface diffusion of polymers and thereby relaxing stresses. On the other hand, application of an electric field is widely used experimentally to structure thin films: when the electric Maxwell surface stress overcomes surface tension and elastic restoring forces, the system undulates with a wavelength determined by the film thickness. We develop a theory taking into account both mechanisms simultaneously and discuss their interplay and the effects of the boundary conditions both at the substrate and the free surface.Comment: 14 pages, 7 figures, 1 tabl

    Missing physics in stick-slip dynamics of a model for peeling of an adhesive tape

    Full text link
    It is now known that the equations of motion for the contact point during peeling of an adhesive tape mounted on a roll introduced earlier are singular and do not support dynamical jumps across the two stable branches of the peel force function. By including the kinetic energy of the tape in the Lagrangian, we derive equations of motion that support stick-slip jumps as a natural consequence of the inherent dynamics. In the low mass limit, these equations reproduce solutions obtained using a differential-algebraic algorithm introduced for the earlier equations. Our analysis also shows that mass of the ribbon has a strong influence on the nature of the dynamics.Comment: Accepted for publication in Phys. Rev. E (Rapid Communication

    Spreading of Latex Particles on a Substrate

    Full text link
    We have investigated both experimentally and theoretically the spreading behavior of latex particles deposited on solid substrates. These particles, which are composed of cross-linked polymer chains, have an intrinsic elastic modulus. We show that the elasticity must be considered to account for the observed contact angle between the particle and the solid substrate, as measured through atomic force microscopy techniques. In particular, the work of adhesion computed within our model can be significantly larger than that from the classical Dupr\'{e} formula.Comment: 7 pages, 7 figures, to appear in Europhys. Let

    Adhesive contact of elastomers: effective adhesion energy and creep function

    Full text link
    For the adhesive contact of elastomers, we propose expressions to quantify the impact of viscoelastic response on effective adhesion energy as a function of contact edge velocity. The expressions we propose are simple analytical functionals of the creep response and should be suitable for experimental data analysis in terms of measured rheologies. We also emphasize the role of the coupling between local stress field at the contact edge and the macroscopic remote loading (far field). We show that the contrast between growing and receding contact originates from the impact of viscoelastic response on coupling, while the separation process at the contact edge is similarly affected by viscoelasticity in both cases.Comment: 17 pages, 7 Figures, 45 references, regular pape

    What impacts of climate change on surface water in France by 2070? Results of the Explore2070 project in metropolitan France and overseas departments

    No full text
    International audienceLes questions relatives à la disponibilité et à la gestion de l'eau concentreront l'essentiel des mesures d'adaptation qui seront prises dans les décennies à venir pour faire face aux conséquences des changements climatiques. Ces mesures devront également prendre en compte les évolutions socio-économiques, en termes de démographie, d'aménagement du territoire et de politiques publiques (agriculture, énergie, transports, etc.). Il est dès lors primordial pour les décideurs et gestionnaires de quantifier les évolutions socio-économiques possibles, ainsi que le devenir de la ressource en eau et de sa variabilité temporelle et spatiale. C'est dans ce contexte que le projet Explore2070 avait pour objectif d'évaluer les impacts possibles des changements climatiques et socio-économiques futurs sur les grandes masses d'eau (surface, souterrain, littoral) et la biodiversité, en France métropolitaine et sur les départements d'Outre-mer (Guadeloupe, Guyane, Martinique et Réunion). Piloté par le Ministère de l'Ecologie (MEDDTL), ce projet a rassemblé de nombreux bureaux d'études et instituts de recherche pour dresser un panorama général des évolutions à attendre à l'horizon 2070. Par son ampleur et la variété de ses objectifs, ce projet doit permettre de répondre à de nombreuses questions des gestionnaires et de mieux apprécier les enjeux de ces évolutions. Dans la suite, nous présentons les travaux réalisés spécifiquement sur la quantification des évolutions des eaux de surface. Nous détaillerons dans ce qui suit la démarche générale de modélisation proposée, la nature des résultats obtenus, ainsi que la façon dont les incertitudes ont été quantifiées. Ce dernier point est indispensable pour aider à la prise de décision dans un avenir incertain. / Water availability and water management will be the focus of most of the adaptation measures that will be taken in the next decades to face the consequences of climate change. These measures will have to account for the socio-economic evolutions, in terms of population size, town and country planning, as well as public policies (agriculture, energy, transports, etc.). It is therefore essential for decision makers and managers to be able to quantify the possible socio-economic evolutions together with the evolution of water resources and their temporal and spatial variability. In this context, the Explore2070 project aimed at evaluating the possible impacts of future climate and socio-economic changes on water bodies (surface water, groundwater and coastal water) and biodiversity, in metropolitan France and overseas departments (Guadeloupe, Martinique, French Guyana, and Réunion Island). The project was managed by the French Ministry of Ecology (MEDDTL) and gathered several consultancies and research institutes to establish a general overview of the expected evolutions by 2070. Through both the extent and the variety of the project’s objectives, Explore2070 will provide answers to many questions raised by managers and better evaluate the stakes related to these evolutions. In the following, we present the work done specifically to quantify the evolution of surface water. The general modelling approach, the type of results and the way uncertainties were quantified are detailed. Uncertainty quantification is essential to help decision making in an uncertain future

    Adhesion between elastic solids with randomly rough surfaces: comparison of analytical theory with molecular dynamics simulations

    Full text link
    The adhesive contact between elastic solids with randomly rough, self affine fractal surfaces is studied by molecular dynamics (MD) simulations. The interfacial binding energy obtained from the simulations of nominally flat and curved surfaces is compared with the predictions of the contact mechanics theory by Persson. Theoretical and simulation results agree rather well, and most of the differences observed can be attributed to finite size effects and to the long-range nature of the interaction between the atoms in the block and the substrate in the MD model, as compared to the analytical theory which is for an infinite system with interfacial contact interaction. For curved surfaces (JKR-type of problem) the effective interfacial energy exhibit a weak hysteresis which may be due to the influence of local irreversible detachment processes in the vicinity of the opening crack tip during pull-off.Comment: 6 pages, 6 figure

    Relaxation oscillations and negative strain rate sensitivity in the Portevin - Le Chatelier effect

    Full text link
    A characteristic feature of the Portevin - Le Chatelier effect or the jerky flow is the stick-slip nature of stress-strain curves which is believed to result from the negative strain rate dependence of the flow stress. The latter is assumed to result from the competition of a few relevant time scales controlling the dynamics of jerky flow. We address the issue of time scales and its connection to the negative strain rate sensitivity of the flow stress within the framework of a model for the jerky flow which is known to reproduce several experimentally observed features including the negative strain rate sensitivity of the flow stress. We attempt to understand the above issues by analyzing the geometry of the slow manifold underlying the relaxational oscillations in the model. We show that the nature of the relaxational oscillations is a result of the atypical bent geometry of the slow manifold. The analysis of the slow manifold structure helps us to understand the time scales operating in different regions of the slow manifold. Using this information we are able to establish connection with the strain rate sensitivity of the flow stress. The analysis also helps us to provide a proper dynamical interpretation for the negative branch of the strain rate sensitivity.Comment: 7 figures, To appear in Phys. Rev.
    corecore